Building the Future:
In-Space Assembled Telescopes (iISAT) Study

Overview and Status
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David Charbonneau (Harvard)
Scott Gaudi (Ohio State University)

Predictive models
conclude need 8 m-
class telescopes to
collect robust results

Thomas Zurbuchen
Associate Administrator
NASA Science Mission

Directorate

ExoEarth Candidate Yield

National Academies Exoplanet Science Strategy
Report Released 9/5/18:

Recommendation #1:

NASA should lead a large strategic direct imaging
mission capable of measuring the reflected-light spectra
of temperate terrestrial planets orbiting Sun-like stars.
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“l love exoplanet science and the search for life. But
why do these large telescopes have to cost so much?”
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,_ n- pace Assembly and Servicing Workshop at NASA|GSFC
November 2017
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70+ participants from government, industry, and academia

1. Commission a design study to understand how large-
aperture telescopes could be assembled and serviced in
space

2. Provide input to the 2020 Decadal Survey about iSA as a

potential implementation approach for future large
apertures.



Study Objective and Deliverables

« Study Objective:
— “When is it worth assembling space

Dr. Paul Hertz telescopes in space rather than building

Director them on the Earth and deploying them

Astrophysics Division ¢ Ivf inale | h

NASA Headquarters autonomously from single launc
vehicles?”

Visionary Era

ExoEarth
Mapper

GW
Surveyor

Black
Hole

Cosmic
Dawn
Mapper

Formation flying

Interferometry: precision
metrology

X-ray interferometry

High-contrast imaging
techniques

Optics deployment and
assembly

4. A st of technology gaps and technologles that may enable In-space
assembly 4
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Study Assumptions

1. Filled-aperture, non-cryogenic telescope operating at UV/V/NIR
assemblable in space
— Four sizes between 5 — 20 m

2. The Observatory must provide the stability requirements
associated with coronagraphy of exo-planets

3. Operational destination is Sun-Earth L2
4. Use of 5-m-class LV fairings

5. Select one reference concept to study

— where the team could dig deeper looking for feasibility issues and
technology needs.

— Not a down select, not a recommendation



Telescope Concepts Considered

Elliptical, off-axis

Segmented
on-axis

5 m segments Pie-shaped segments

Segmented, off-axis__ g

Sparse, rotating




Robot Concepts Considered
Supervised Autonomous Robotic Assembly

Multi-limbed robot

Astronauts and
robotic arms

P

HST Servicing MiSSIO ="

NASA’s Restore-L




Assembly Platforms Considered

New TBD commercial platform in LEO or GEO

,,.‘ﬂﬂgagﬂf
Radiator

Use the telescope’s
spacecraft bus in
any orbit




Many 5 m-Class Fairing Rockets to Choose From
Existing; competition drives down cost and mitigates schedule risk

ULA’s Delta IV Heav ULA’s AtlasV  SpaceX’s Falcon Heavy CNES’ Ariane V

Photo: United Launch Alliance Photo: United Launch Alliance Photo: SpaceX Photo: CNES



Orbits Considered
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tion of a 20 m Space

Modulariza

Telescope

28.5m

Picture Credit:
R. Mukherjee et, al,, 2018




Delivery ConOps
Disposable Cargo Delivery Vehicle (CDV)
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Delivery Via Disposable Cargo Delivery Vehicle
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Telescope Bus and Solar Arrays




Telescope Deployed Trusses




Backplane Trusses
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Mirror Segments
,”’?) -~ (7 segments per raft; 37 rafts)
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Simple power connection and free-space
optical communications across short gap
using a standard interface for all modules
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Some Interim Results

The key design features that make iSA realizable are:
o (1) Modularized flight elements, (2) multiple LVs, (3) iSA
Many technologies already in hand, dev needed in a few areas
o in-Space Servicing (iSS) in particular to gain the benefits of serviceability
Unequivocal science benefits through serviceability
o Extended science for potentially decades through refueling, repairs
o Swapping out instruments with newer ones without needing a new facility
o Amortizing system costs over a longer science operational time
Risk mitigation benefits of iSA are compelling

o Architectures that eliminate or simplify dependence upon complex
autonomous deployables (lower number of SPFs).

o Recovery from flight system and assembly/deployment failures and
anomalies.

o Launch failure is not mission failure.

Modularization enhances domestic and int’l partnerships.
Presents a path towards scalability

Cost impacts are in process - uppers and downers



iISA can play a major part of the
astrophysics landscape in the next
decade.

Stay tuned for final report in July.
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Capability Need Prioritization Results

- Aggregate
Capability m Prioritization Score

7.3 Fail-safe modes of behavior on failure detection 1 1.00
10.3 Modular design 2 0.96
14.1 Soft docking / berthing of modules 3 0.91
13.1 A limited number of standard mechanical, electrical, thermal, and fluid connection

approaches with well-characterized properties 4 0.89
6.1 Standard protocols and ports to accommodate visiting vehicles and communication

traffic 5 0.87
5.1 Means of verifying the continuity of interface connections / disconnections 6 0.84
10.5 Design for serviceability 7 0.84
5.5 Modeling and simulation for verification and validation 8 0.83
5.6 Modeling and simulation for assembly sequencing / planning 8 0.83
4.1 Ability to reversibly assemble structural, electrical, and fluid connections 10 0.82
6.2 Standard but secure communication protocols to accommodate interaction with other

(TBD) associated systems 11 0.80
5.7 Quantitative performance prediction for autonomous systems 12 0.79
10.4 Design for assembly 13 0.78
2.5 Ability to assemble high stiffness structures 14 0.78
8.2 Known precision limits of any and all assembly agent elements across the assembly

site's environmental envelope 15 0.77
2.1 Robotic assembly with joining 16 0.76
3.1 Ability to route electrical power and data across assembled joints 17 0.76
4.2 Ability to disconnect structural, electrical, and fluid connections without propagating

damage to other system components 18 0.73
3.3 Ability to route fiber optical conductors across joints 19 0.71

7.1 Intelligence to make stereotyped decisions correctly without human input. 20 0.68




